翻訳と辞書
Words near each other
・ Reed Easterwood
・ Reed Elley
・ Reed Elsevier, Inc. v. Muchnick
・ Reed Erickson
・ Ree
・ Ree Drummond
・ Ree Gaun
・ Ree group
・ Ree Heights, South Dakota
・ Ree Kaneko
・ Ree Morton
・ Ree Park – Ebeltoft Safari
・ Reeb
・ Reeb foliation
・ Reeb graph
Reeb sphere theorem
・ Reeb stability theorem
・ Reeb vector field
・ Reeberg
・ Reebie Storage Warehouse
・ Reebok
・ Reebok advertising campaigns
・ Reebok Big Time
・ Reebok Classic
・ Reebok Freestyle
・ Reebok Human Rights Award
・ Reebok insider trading case
・ Reebok Nano
・ Reebok Princess
・ Reebok Pump


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reeb sphere theorem : ウィキペディア英語版
Reeb sphere theorem
In mathematics, Reeb sphere theorem, named after Georges Reeb, states that
: A closed oriented connected manifold ''M'' ''n'' that admits a singular foliation having only centers is homeomorphic to the sphere ''S''''n'' and the foliation has exactly two singularities.
==Morse foliation==

A singularity of a foliation ''F'' is of Morse type if in its small neighborhood all leaves of the foliation are levels of a Morse function, being the singularity a critical point of the function. The singularity is a center if it is a local extremum of the function; otherwise, the singularity is a saddle.
The number of centers ''c'' and the number of saddles s, specifically ''c'' − ''s'', is tightly connected with the manifold topology.
We denote ind ''p'' = min(''k'', ''n'' − ''k''), the index of a singularity p, where ''k'' is the index of the corresponding critical point of a Morse function. In particular, a center has index 0, index of a saddle is at least 1.
A Morse foliation ''F'' on a manifold ''M'' is a singular transversely oriented codimension one foliation of class ''C''2 with isolated singularities such that:
* each singularity of ''F'' is of Morse type,
* each singular leaf ''L'' contains a unique singularity ''p''; in addition, if ind ''p'' = 1 then L\setminus p is not connected.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reeb sphere theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.